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ABSTRACT
This note is a successor of [T], where the author introduced the concept
of defect for factor maps out of dynamical systems on totally disconnected
spaces. The purpose here is to prove the variational principle for the defect
and derive some consequences of it.

1. Introduction

The defect of a factor map, m: (Y,¥) — (X,¢), between dynamical systems
with Y totally disconnected, is a number D(r) € [0, 00] which gives a numerical
indication of how far = is from being a conjugacy. It was defined, in [T}, in the
following way. For each finite partition P = {P;}icr of Y consisting of closed
and open sets, let gx (¢, m(P)) denote the maximal number of elements in a subset
J C I* such that

N #(Py) e (x(Py)) N---N ™ (n(P,,))
(i1 i in)ET

is not empty. Since gr4n{@, T(P)) < qr(p, 7 (P))gn(p, 7(P)) for all k,n, we can
consider the-quantity

Qo (P)) = lim ~logga(p, 7(P).

Then
D(m) = sup Q(p, (P)).
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The defect is zero when 7 is a conjugacy, but non-zero as soon as ¢ has a periodic
point with more than one pre-image under #. In [T] some general properties of the
defect were deduced and the defect was calculated in a series of examples, includ-
ing the factor maps out of finite type subshifts resulting from Markov partitions
of expansive homeomorphisms and expansive endomorphisms. Furthermore, it
was shown (when Y is metrizable) that

(1.1) D(r) > sup /X log #7 " (z)dps(z),

where p varies over all p-invariant Borel probability measures on X, and that
equality holds in (1.1) when there is only one p to consider, i.e. when ¢ is uniquely
ergodic. The main purpose of the present note is to remove this assumption on ¢
and prove that equality always holds in (1.1). This identity can be considered as
a variational principle for the defect, in analogy with the celebrated variational
principle for the topological entropy.

In addition to proving the variational principle for the defect, we derive here
three consequences of it. Firstly, we show that when ¢ and ¢ are both homeo-
morphisms, the defect must be the logarithm of a natural number or infinite,
and when it is finite, say equal to log k, there is a w-ergodic measure p such
that #n~1(x) = k for g-almost all z. (In contrast, when the dynamical systems
are not homeomorphisms, but merely endomorphisms, the defect can take on
any value in [0, 00]; see [T].) The second consequence of the variational principle
which we present is also concerned only with invertible dynamical systems, and
shows that the defect is subadditive with respect to composition of factor maps;
in symbols,

D(my o m1) < D(m3) + D(m).

See Theorem 3.3 for the precise statement. This subadditivity fails for factor
maps between general (non-invertible) dynamical systems as we show by example.
Finally, we use the variational principle to prove that the defect is finite only when
the topological entropies of the dynamical systems involved are the same.

2. The variational principle

In the following a dynamical system, (X, ¢), will mean a compact metric space
X and a continuous map ¢: X — X. The dynamical system is called invertible
when ¢ is a homeomorphism. We adopt the notation from [T].
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THEOREM 2.1: Let m: (Y,9) — (X,¢) be a factor map between dynamical
systems with Y totally disconnected. Then

D) = sup /X log #7* (z)dp(),

where the supremurn is taken over all p-invariant Borel probability measures. In
fact, it suffices to take the supremum over all p-ergodic invariant Borel probability
measures.

Proof: By Proposition 5.1 in [T] it suffices, for the proof of the first statement,
to show that

D(r) < sup /X log #7™ (¢)dp(z).

Let t € R be a number strictly less than D(m) and let € > 0. We must produce a ¢-
ergodic invariant probability measure p such that [, log #7~(z) du(z) > t—2e.
Choose a finite partition, P = {P;}ics, of Y by open and closed sets such that
Q(p,7(P)) > t. To simplify notation we set F; = 7(P;) and F = w(P) = {Fi }ier.
For each m € N, choose z,, € X such that

1 1
- log gm(p, F) —€ < EIOng(mmaf)'
Set,

1 m—1
m = E z_;) 5¢i(zm),

where &, denotes the Dirac measure at y. Let 4 be a weak*-condensation point for
the sequence {i,,}. Then p is clearly y-invariant. For each k € {1,2,--- ,#I},
set Hy = (J; ;s Fj where we take the union over all subsets J of I of cardinality
< k. Since Hy is closed we can find a decreasing sequence f{ > fZ > --- of
continuous functions on X such that f2(X) C [0,1] and fp(z) =1, = € Hy, for
all n € N and lim,_, ff(z) = 15, () for all z € X. Fix n € N. There is then
an m such that

/Xlog ka ())dpm(z) < / log ka

Since gm (zm, F) < [lizo Z ( Zm)) we have that

1 m—
m — log Qm T, F S ZO Og fk (xrn
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But

log gm (zm, F) + ¢,

1 1 1
= inf = < = < =
Qp, F) ,grelg kloqu(cp,f) < mlogqm(<p,f) <~

so we find that Q(¢, F) < [y log(zk L f(z))du(z) + 2¢. By taking the limit
over n this shows that

(2.1) Qe, F) < /X log A (a)dp(z) +2e,

where Ar(z) = #{i € I : ¢ € F;}. Let M denote the compact convex set of
-invariant Borel probability measures on X. Define an affine function ¢: M —
[0, o[ by

1,0(1/):/ log Ax(z)dv(z).

Since (v) = inf, [, log(XFL, fi(z))dv(z) we see that ¢ is upper semi-
continuous, so by Bauers maximum principle 1 attains its maximum value at
an extreme point. This extreme point, vy, is a p-ergodic invariant Borel proba-
bility measure and, by (2.1},

Qv 7) - 2 < [ log As(a)dn(o).
X
Since Ax(z) < #n~1(z), we find that

t—2 < Qp, F)—2e < /X log Ar{z)dvy(z) < /X log #n 1 (z)dvp(). |

3. Consequences

THEOREM 3.1: Let m: (Y,%) — (X,p) be a factor map between invertible
dynamical systems with Y totally disconnected. Assume that D(m) < co. There
is then a k € N and a p-ergodic probability measure y on X such that #n~(z) =
k for p-almost all z, and

D(m) =logk.

Proof: Let k be the natural number such that log(k — 1) < D(r) < log k. By
Theorem 2.1 there is some -ergodic invariant Borel probability measure p such
that

p{zeX : #ria)>k-1})=p({z e X : #xYz) > k})>0.
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Since x + #m~1(z) is p-invariant, the ergodicity implies that

p{z e X : #r7l(z) =k}) = 1. ]

In contrast, when considering the defect between general (non-invertible)
dynamical systems, the defect can take on all values in [0, oo]; cf. [T] .

Remark 3.2:  As this result shows, the calculations described in Example 4.11 of
[T] are wrong. The defect of the factor map (%, ¢) is not % log 2 as asserted, but
2k log 2. The number —%’“ log 2 is only the quantity Q(y, 7(k, q)(P)), where P is
the cover of Ly, obtained by fixing the first coordinate. To get the correct larger
value one must consider the partitions obtained by fixing, at least, () successive
coordinates. [

We turn to other consequences of the variational principle for the defect.

THEOREM 3.3: (Subadditivity of the defect) Let (X,¢), (Y,%) and (Z,)) be
invertible dynamical systems with X and Y totally disconnected. Let m1: (X, ¢)
= {Y,¥) and m2: (Y, %) — (Z, A) be factor maps. It follows that

D(my o my) < D(m1) + D(m2).

Proof: Let y be a A-invariant Borel probability measure. There is a 1-invariant
Borel probability measure v such that u = v o7, '. Let B and C denote the
completions of the Borel sets in Z, resp. Y, with respect to the measure u,
resp. v. If there is a B-measurable set A C Z of positive measure such that
#751(z) = oo for z € A, we have that J log #7571 (2)du(z) = oo and hence
D(my) = oo. In this case the inequality we are proving is trivial, so we may
assume that #m; 1(2) < oo for p-almost all z € Z. Similarly, we may assume
that #m; !(y) < oo for v-almost all y € Y. Consider

Vi={yeY : #r7'(y) > #nr ' (2), 2 € 15 (m(¥))}.

By using results of Rohlin, cf. [R], one can show that Y7 is a C-measurable subset
of Y. Note that Y; is 1-invariant since ¢ and ¢ are invertible. Set 7 = m2)y,. By
ignoring nullsets we can write Z as a disjoint union, Z = Z;UZsUZ3U- - -, where
#71~1(2) = k, z € Zi. Furthermore, by [R] we can choose measurable functions
k¥ Zy - Y1, i=1,2,...,k, such that 7~ 1(2) = {xk%(2), k5 (2),- - kg (2)} for all
2 € Zg. There is then a Borel probability measure v; on Y such that

1 k
[ v =3 [ B oK, e Cm)
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Since { o k§(2), v o £5(2), -+ ;¥ 0 w{(2)} = {KE(A(2)), BE(A(2)), - -, E(M(2))}
for all z € Z; we find that

/f by Z/Zk Zf ¥ o k¥ (2)du(z)

_Z/Z Zfon o M(2)du(2)

for all f € C(Y'), proving that 1, is ¢-invariant. Note that

log #(mz 0 m1) ™} (2) log( > #Wfl(y))

yeE®, I(Z)

= log #m; }(2) + log (#751‘1@ > #ar l(y))

yem; '(2)

< log#ﬂz () + - % Zlog#m (& j(z))

j=1

for all z € Zy, k € N. Hence
[ 108 #t(ra 0 m) GJaut)
z

1 k
< st @)+ X [ - o7 (s )u(s)

/ log #75 ' (2)dp(2) / log #m1 ! (y)dv (v)
< D(m3) + D(m).
The conclusion follows by taking the supremum over all p. [ |

Remark 3.4: 'The subadditivity of the defect fails when we consider general (non-
invertible} dynamical systems. To see this it would suffice to consider Example
2.5 of [T], but it is better to put that example in the following, slightly wider
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perspective. Let m1: (F1, 1) — (Fa, ps) be a factor map where both Fj and F3
are finite sets. By identifying F; with

{(x7<pl(x)79012($)7(p?(w)a ‘e ) S EN LT e F,}

we can consider (F}, ;) as a (rather trivial) one-sided subshift of finite type. In
this picture m; becomes a factor map which is full in the sense of Definition 2.1
of [T}, so we may apply Theorem 2.4 of [T] to conclude that the defect D(m) is

»
max { %Z log #n7(ph(z)) : x € Fy has period p under s,

i=1

p€{1’2a"',#F2}}'

In particular, when ¢ is transitive and hence conjugate to a cyclic permutation
as in Example 2.5 of [T], the defect is

1 m
- ;logdi

where m = #F,, Fy = {z1,23,... ,2,} and d; = #wl_l(.ri), i=1,2,...,m. Let
7yt Fy — {0} be the map which identifies all points in Fy. Then D(m3) = log m
and, in general, D(myom) = log #F; = log(3_1~, di) £ log m+(3 1, log d;)/m.
So the subadditivity of the defect fails in these examples. [ |

The next goal will be to prove the following

THEOREM 3.5: Let m: (Y,9) — (X,y) be a factor map between dynamical
systems with Y totally disconnected. Then

D(r) < 0o = h(¢) = h(yp).

This result seems highly probable in view of Theorem 2.1, but I haven’t been
able to find a short proof based on 2.1 alone. The strategy of the proof will be to
prove it first when both dynamical systems are invertible, and then reduce the
general case to that case by use of the ‘natural extension’.

LEMMA 3.6: Let 7: (Y,9) = (X, ¢) be a factor map between dynamical systems
with Y totally disconnected. Then

W) < h(g) + D(m).
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Proof: Let P = {P,;}ics be a finite partition of Y consisting of open and closed
sets. Then the entropy, h(1,P), of ¥ with respect to P is limy, o0 # log M,,
where

Mmz#{(il’iZa---’im)eIm : Blnw_l(Pi2)n"'m¢—m+l(Rm)75@}'
Set F; = ﬂ'(P,‘), F = {Fi}iel and
Nmz#{(il,ii’a"' aim) erm . F‘iln(P_l(Ez)n"'nSD—m+l(Fim)7&@}'

Since W(P‘il n’(b_l(sz)n' : 'n'lp-m-}'l(Pim)) C Fil n‘p_l(Fiz)n' ’ ,nw—m-i-l(Fim)’
we find that M,, < N,,. Hence

) 1
(3.1) h($,P) < lim —log Nin.
We assert that
. 1
(3.2) Jim — log Ny < h{p) + Q(p, F).

To prove this, let d be a metric for the topology of X. Since F consists of closed
sets, we can find, for each z € X, an open neighbourhood W(z) of = such that

(3.3) FFNW(z)#0=>z€F;
for all i € I. Let k € N and set
U(z) = W(z) No~ ' (W(e(@))) N 2(W(p(2)) N--- N (W (" (2))).

Let U be a finite subcover of {U(z)}zex and let € > 0 be a Lebesgue number
for U, i.e. every e-ball B(z) = {y € X : d(y,2) < €}, z € X, is contained in a
member of U. Let G: X — U be a function such that B.(z) C G(z), x € X. Let
m € N and let E be an (mk, ¢)-spanning set of minimal cardinality; cf. [W}, p.
168. Then #E = 7t (€, X) in the notation of [W]. Let S be the set of mk-tuples
(f1,%2,- -+ yimk) € I™F for which there is an e € E such that

(34) Fijk+1 n (p_l (Fijk+2) n---N (p_k+l (E(j+1)k) n G(‘p’k(e)) 7é @)

j=0,1,2,... ,m—1. Fix some e € E. There are elements z¢,z1,... ;Zm-1 € X
such that G(¢?*(e)) = U(z;), § =0,1,2,... ,m—1. So if (i1,42,... ,imk) € I™F
satisfies (3.4) with respect to this e we have, because of (3.3), that

— —k
z; € Fijp, Ny I(Ejkn) N---Ne * (F'i(j+1)k)’
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j =1,2,... ,m — 1. Therefore the number of tuples (i,42,... ,imk) € I™ for
which (3.4) holds for this specific e € E cannot exceed gi(p, F), i.e. we have that
#S < (#E)-qi(0, F)™ = T (€, X) - q (0, F)™. Now if (i1,42,... ,imk) € [™F is
a tuple such that F;, Ng™*(F;,)N---Np~™F+1(F; ) is not empty and z is an ele-
ment in the intersection, then 7% (z) € Fy,,,, N~ (Fy,, )N - -Np~F+1 (Figay)-
On the other hand, there is an element e € E such that d{¢*(z),p*{e)) <e€, i =
0,1,2,... ,km — 1, since E is (mk, ¢)-spanning. Hence ©'*(z) € B.(p*(e)) C
G(Lp]k(e)) and Wk(z) € Fvijk+1n(p*1(‘Fijk+2)n' : 'n<p_k+1(Fi(j+l)k)nG(wjk(e)) # 0
for all j = 0,1,2,... ,m — 1. This shows that Ng,, < #5S5 so that Ng, <
rmk(€, X) - qi(p, F)™. Consequently

1
lim llog N, = lim —log Ngm < limsupllog rn(e,X)+llog qr(p, F).
m—00 M m—o0 km n n k

Since lim sup,, 1 log 7 (e, X) < h(p), cf. [W], we obtain (3.2) by letting k tend to

infinity. By combining (3.1) and (3.2) we find that h(1), P) < h(p) + Q(p, 7(P)).
The proposition follows by taking the supremum over all P. |

The preceding proof is an elaboration of an argument involved in one of the
possible proofs of the variational principle for the topological entropy; cf. Lemma
18.2 of [DGS].

LEMMA 3.7: Let m (Y,¥) — (X,9) be a factor map between invertible
dynamical systems with Y totally disconnected. For any k € N the defect of
m: (Y,%) = (X, ) is the same as the defect of w: (Y,9*) — (X, ¢*).

Proof: To distinguish between the two cases in the notation we let 7(¥) denote
7 when the map is considered as a factor map (Y,%*) — (X,¢*). Then, by
Theorem 2.1,
D(m) = sup [ log #7 (@)dula)
MJx

Be
and

D(n®)) = sup / log #n 1 (z)du(z)
nEM;

where M and M; denote the set of @-invariant, resp. ¢*-invariant, Borel
probability measures. Since M C M we have that D(x) < D(x(®)). For
each v € Mk,

lk—l )
= EZI/ocp_J

=0
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isin M and

B = .y
/X log #r~(¢)dv <x)=;§0 /X log #7(¢? («))dv(z)

= / log #n(z)dv(z)
X
since #1 Y@’ (z)) = #n~(z) for all j,z. Hence D(n®)) < D(r). |
We can now give the

Proof of Theorem 3.5: Assume D(m) < oo, and consider first the case where
both'3) and ¢ are homeomorphisms. If k(1)) = oo it follows from Lemma 3.6 that
h(p) = 0o. So assume that h(1) < oo. Since h(¥*) = kh(y) and h(p*) = kh(y)
for all £ € N, we get from Lemma 3.6 and Lemma 3.7 that

k(h(y) — h(g)) < D(x) < o0
for all k € N. This implies that () = h(yp). This argument does not extend to
the non-invertible case because Lemma 3.7 fails in the general case, but we can

extend the conclusion in the following way. Let (X¥,0y) denote the natural
extension of 1, i.e.

2% = {(¥0,y1,42,--) €Y : P(Ynt1) = Yn,m 2 0},

and oy: Z¥ — TV is given by o ((3:)) = (¥(3:)). The natural extension (X¥,0,)
is defined similarly. We can then define a factor map 7: (X¥%,04) = (£9,0,)
by #((y:)) = (w(y:)). (The fact that 7 is surjective foliows from the following
little compactness argument: Let z = (z;) € £¥. For each k € N choose 2z €
Y such that m(zx) = zx. Let a be any point in ¥ and define y* € YN by
y* = F~H(z),i < k,yF = a,i > k. Let y be a condensation point for the
sequence {yx} in the compact metric space YN. Then y € £¥ and #(y) = z.)
It follows from [T], Remark 1.10, that D(%) < D(r). Hence D(7) < oo, since
we assume that D(w) < oo; oy and o, are homeomorphisms and we conclude
from the first part of the proof that h(oy) = h(o,). By Proposition 5.2 of [B],
h(¥) = h(oy) = h{o,) =h(p). B

The moral of Theorem 3.5 is that the defect is finite, and hence interesting, only
when the topological entropy can’t tell the involved dynamical systems apart.
Very simple examples show that the reverse implication, h(y)) = h(p) = D(7) <
00, is false in general. But in many interesting cases (e.g. when (Y,%) is an
irreducible sofic system), the reversed implication is actually true. So in such
cases the defect is interesting, as an invariant for factor maps, precisely when the
entropy of the dynamical systems agree.
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