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ABSTRACT 

This  note is a successor of [T], where the author  introduced the concept 

of defect for factor maps  out  of dynamical systems on totally disconnected 

spaces. The purpose  here is to prove the variational principle for the defect 

and derive some consequences of it. 

1. I n t r o d u c t i o n  

The defect of a factor map, 7r: (Y,~b) ~ (X, qo), between dynamical systems 

with Y totally disconnected, is a number D(Tr) E [0, c~] which gives a numerical 

indication of how far 7r is from being a conjugacy. It was defined, in IT], in the 

following way. For each finite partition P = {Pi}ier  of Y consisting of closed 

and open sets, let qk (~, 7r(P)) denote the maximal number of elements in a subset 
J C I k such that  

n ~, (~)  n (p-l(7r(Pi,)) n . - .  n ~P-k+l(TF(Pik)) 
( i l  ,i., ,... , i k )  C J 

is not empty. Since qk+n(~o, ~r(:P)) < qk(~o, rc('P))qn(~o, ~r(:P)) for all k, n, we can 

consider thequant i ty  

Q(~,~r('P)) = lira l logqn(~,Tr(p)) .  
n.--~oo n 

Then 

D(~r) = sup Q(~0, 7r(p)). 
7~ 
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The defect is zero when 7r is a conjugacy, but non-zero as soon as ~ has a periodic 

point with more than one pre-image under 7r. In [T] some general properties of the 

defect were deduced and the defect was calculated in a series of examples, includ- 

ing the factor maps out of finite type subshifts resulting from Markov partitions 

of expansive homeomorphisms and expansive endomorphisms. Furthermore, it 

was shown (when Y is metrizable) that  

(1.1) D(rr) _> sup f log #rc-l(x)dp(x), 
tt , I X  

where # varies over all ~-invariant Borel probability measures on X, and that  

equality holds in (1.1) when there is only one # to consider, i.e. when ~ is uniquely 

ergodic. The main purpose of the present note is to remove this assumption on 

and prove that  equality always holds in (1.1). This identity can be considered as 

a variational principle for the defect, in analogy with the celebrated variational 

principle for the topological entropy. 

In addition to proving the variational principle for the defect, we derive here 

three consequences of it. Firstly, we show that when r and ~ are both homeo- 

morphisms, the defect must be the logarithm of a natural number or infinite, 

and when it is finite, say equal to log k, there is a ~-ergodic measure # such 

that  # l r - l ( x )  = k for/z-almost all x. (In contrast, when the dynamical systems 

are not homeomorphisms, but merely endomorphisms, the defect can take on 

any value in [0, oc]; see [T].) The second consequence of the variational principle 

which we present is also concerned only with invertible dynamical systems, and 

shows that  the defect is subadditive with respect to composition of factor maps; 

in symbols, 

D(Tr2 o 7rl) _< D(~r2) + D(lrl). 

See Theorem 3.3 for the precise statement. This subadditivity fails for factor 

maps between general (non-invertible) dynamical systems as we show by example. 

Finally, we use the variational principle to prove that the defect is finite only when 

the topological entropies of the dynamical systems involved are the same. 

2. The variational principle 

In the following a dynamical system, (X, ~), will mean a compact metric space 

X and a continuous map ~o: X -+ X. The dynamical system is called invertible 
when ~o is a homeomorphism. We adopt the notation from [T]. 
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THEOREM 2.1: Let 7r: (Y,r -+ (X,~o) be a factor map between dynamical 
systems with Y totally disconnected. Then 

D(Tr) = sup f log :~71 "-1 (x)d#(x), 
d X  

where the supremum is taken over a11 ~-invariant Borel probability measures. In 

fact, it suffices to take the supremum over all ~o-ergodic invariant Borel probability 
measures. 

Proof: By Proposition 5.1 in [T] it suffices, for the proof of the first statement,  

to show that  

D(~r) _< sup [ log #71" - 1  (x)d#(x). 
d x  

Let t G ~ be a number strictly less than D(rr) and let e > 0. We must produce a qo- 

ergodic invariant probability measure # such that  f x  log #rr - l ( x )  d#(x) >_ t -  2e. 
Choose a finite partition, 7 ~ = {Pi}ieI, of Y by open and closed sets such that  

Q(qo, ~r(P)) > t. To simplify notation we set Fi = 7r(Pi) and 5 c = 7r(P) = {gi}iE I. 
For each m E N, choose xm E X such that  

1 1 
- -  log qm(qO,.T) -- e < - -  ]Ogqm(Xm,.T'). 
m m 

Set 
m-1 

1 E ~(z,~), 
~ = m 

i=0 

where 5y denotes the Dirae measure at y. Let # be a weak*-condensation point for 

the sequence {#m}. Then # is clearly ~invar iant .  For each k E {1, 2 , . . - ,  # I } ,  

set Hk = I.J j N j s  j F~ where we take the union over all subsets J of I of cardinality 

< k. Since Hk is closed we can find a decreasing sequence f~ > f2 >_ . . .  of 

continuous functions on X such that  f~(X)  C [0, 1] and f~(x) = 1, x e Hk, for 

all n E N and lim~-4~ f~(x) = 1Hk (x) for all x E X.  Fix n E N. There is then 

an m such that  
#1 #i  

f l~  l ~  
X k = l  k = l  

m--1 
Since q,~(x,m.~) <_ l-L=0 ~]k#/1 f~(~i(Xm)) we have that  

m - 1  # I  

l logqm(Xm,~c ) <- 1 E log(Ef~(qoi(Xm))) 
m m 

i=o k= l  

# I  # I  

k=l k=l 
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Q ( ~ , ~ )  = inf 1 logqk(~,sr)  < l logqm(qO,~-) < l logqm(Xm,U)+ e, 
kcr~ k - m - m 

so we find that  Q(qo,~-) < fxlog(~ffr=l f~(x))d#(x)+ 2e. By taking the limit 

over n this shows that  

Q(qo,~) <_ I x  logg~=(x)d#(x) + 2~, (2.1) 

where At(x)  = #{i  E I : x E Fi}. Let M denote the compact convex set of 

qo-invariant Borel probability measures on X. Define an affine function r M --~ 

[0, c~[ by 
P 

r  = Jx log Aa:(x)d,(x). 

�9 # I  n Since r  = mfnfxlog(~k=lf~(x))d~,(x) we see that  r is upper semi- 

continuous, so by Bauers maximum principle r attains its maximum value at 

an extreme point�9 This extreme point, u0, is a ~a-ergodic invariant Borel proba- 

bility measure and, by (2�9 

Q(qo, ff:) - 2e < f x  logA~=(x)dvo(x). 

Since A~=(x) < #Tr- l (x) ,  we find that  

t - 2 e < Q ( ~ , ~ ) - 2 e < _  fxlogA~(~)a.o(~)<_ fxlOg#.-~(~)e.o(~).  , 

3. C o n s e q u e n c e s  

THEOREM 3.1: Let 7r: (Y,r --~ (X,~a) be a factor map between invertible 
dynamicaJ systems with Y totally disconnected. Assume that D(Tr) < c~. There 

is then a k E N and a qo-ergodicprobabilitymeasure# on X such that # r - l ( x )  = 
k for Iz-almost alI x, and 

D(Tr) = log k. 

Proof." Let k be the natural  number such that  log(k - 1) < D ( r )  < log k. By 

Theorem 2.1 there is some qa-ergodic invariant Borel probability measure # such 

that  

, ( { x  ~ x : # ~ - l ( x )  > k - 1}) = , ( { ~  e X : # ~ - 1 ( ~ )  > k}) > 0. 
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Since x F-~ #Tr -x (x )  is ~o-invariant, the ergodicity implies tha t  

i t ( { X  �9 X : #71"--I(x) ~--- k } )  ~- 1. | 

In contras t ,  when considering the defect between general  (non-invert ible)  

dynamica l  systems,  the  defect can take on all values in [0, cx~]; cf. [T] . 

R e m a r k  3.2: As this result  shows, the calculat ions described in Example  4.11 of 

[T] are wrong.  T h e  defect of  the  factor  m a p  7r(k, q) is not  ~ log 2 as asserted,  but  

2k log 2. The  number  -~ log 2 is only the quant i ty  Q(9~, 7r(k, q)(1))), where :P is 

the  cover of Ek,q obta ined  by fixing the first coordinate.  To get the  correct  larger 

value one mus t  consider the par t i t ions  obta ined  by fixing, at  least, Q successive 

coordinates .  | 

We tu rn  to o ther  consequences of the variat ional  principle for the  defect. 

THEOREM 3.3: (Subaddi t iv i ty  of the defect) Let (X,~), (Y,r and (Z,A) be 

invertible dynamical systems with X and Y totally disconnected. Let 7rl : ( X,  ~o) 
-~ (Y,q;) and 7r2: (Y, ~b) -+ (Z,A) be factor maps.  It follows that 

D(rr2 o ~rl) <_ O(Trl) + D(Tr2). 

Proof." Let  # be a A-invariant Borel probabi l i ty  measure.  There  is a r  

Borel p robabi l i ty  measure  v such tha t  it = u o 7r~ 1. Let  B and C denote  the  

comple t ions  of the  Borel sets in Z, resp. Y, with respect  to  the measure  it, 

resp. v. If  there  is a B-measurab le  set A C Z of posit ive measure  such t ha t  

#7r~-l(z) = oo for z E A, we have t ha t  fzlog#zr21(z)dit(z) = cx~ and hence 

D(zr2) = oo. In this case the inequali ty we are proving is trivial,  so we m a y  

assume tha t  #Tr~-t(z) < c~ for i t -almost  all z E Z. Similarly, we may  assume 

tha t  #zr~-l(y) < o0 for u-almost  all y �9 Y. Consider 

]I1 = {Y �9 Y : # T r l l ( y )  ~ # T r l l ( x ) ,  x �9 7r2-1(Tr2(y))}. 

By  using results  of Rohlin,  cf. [R], one can show tha t  Y1 is a C-measurable  subset  

of Y. Note  t ha t  II1 is r  since ~ and r are invertible. Set 7r = lr~lr , . By  

ignoring nullsets we can wri te  Z as a disjoint union, Z = Z1 U Z2 U Z3 U - - . ,  where  

# T r - l ( z )  = k, z �9 Zk. Fur thermore ,  by [R] we can choose measurab le  funct ions 

k ' Z k - + Y l ,  i 1,2, k, such tha t  ~r- l(z)  {~lk(z), ~ ( z ) , .  k ~i . . . . .  , = "" , a k lz) } for all 
z �9 Zk. The re  is then  a Borel probabi l i ty  measure  Ul on Y such t h a t  

/Yf(Y)dUl(Y) ~k /Z ~ ~1 k( = f o r t  z)dit(z), f �9 C(Y).  k ~_ 
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Since {r o nk(z), r o eck(z), . . . ,  ~b o n~(Z)} = {nlk(/~(Z)), tC~(A(Z)),. �9 �9 , tC~(A(Z))} 
for all z E Zk we find that 

k f. fez f o r = ~ ~ : o r o ~(z)a.(~) 
k k = 

k 

k ~ ~ = y o , , j  o : , ( z )d# ( z )  

k 

L 1 
k k j = l  

= f y  f(y)dul(y) 

for all f E C(Y), proving that Ul is r Note that 

l~ #(7r2 ~ 'n1)-1 (z) = l~ ( ~ #Trll (Y)) 

= log#~;~(z) + log ~ #~-~(v) 

log # ~ l ( ~ ( z ) )  1 
< log #r21(z)  + 

j = l  

for all z E Zk, k E N. Hence 

z log #( r2  o 7rl)-l(z)d#(z) 

k 

<-- l~ #Tr21(z)d#(z) + ~, k j=l 

= fz l~ + fY log #~;'(y)d~l(y) 

< D(Tr2) + D(Trl). 

The conclusion follows by taking the supremum over all #. II 

Remark 3.4: The subadditivity of the defect fails when we consider general (non- 
invertible) dynamical systems. To see this it would suffice to consider Example 
2.5 of [T], but it is better to put that example in the following, slightly wider 
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perspective. Let 7r1: (F1,~1) --~ (F2,9~2) be a factor map where both/71 and F2 

are finite sets. By identifying Fi with 

2x 3x : x c  

we can consider (Fi, ~i) as a (rather trivial) one-sided subshift of finite type. In 

this picture 7rl becomes a factor map which is full in the sense of Definition 2.1 

of [T], so we may apply Theorem 2.4 of [T] to conclude that  the defect D(Trl) is 

f i l o g # T r 1 1 ( ~ ( x ) )  : x C F2 has period p under ~2, 
1 

max { P i=1 

p E {1 ,2 , . . .  ,#F~} }. 

In particular, when ~2 is transitive and hence conjugate to a cyclic permutation 

as in Example 2.5 of [T], the defect is 

1 m 
- -  E log d~ 
m 

i=1 

where m = #F2,  F2 = {xl ,x2, . . .  ,x,~} and di = #r~-l(x~), i -- 1 ,2 , . . .  ,m. Let 

r2 :F2  --+ {0} be the map which identifies all points in F2. Then D(~2) = log m 
1 m m and, in general, D(r2o~h) = log #F1 = og(~-~= 1 d~) ~ log m + ( E i =  1 log d~)/m. 

So the subadditivity of the defect fails in these examples. | 

The next goal will be to prove the following 

THEOREM 3.5: Let 7r: (Y,r --+ (X,~)  be a factor map between dynamical 
systems with Y totally disconnected. Then 

D(zr) < oc =~ h(r = h(~). 

This result seems highly probable in view of Theorem 2.1, but  I haven't  been 

able to find a short proof based on 2.1 alone. The strategy of the proof will be to 

prove it first when both dynamical systems are invertible, and then reduce the 

general case to that  case by use of the 'natural extension'. 

LEMMA 3.6: Let It: (Y, r  --~ (X, ~) be a factor map between dynamical systems 
with Y totally disconnected. Then 

h(r < h(~) + D ( ~ ) .  
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Proof: Let 79 ---- {Pi}iEI be a finite partition of Y consisting of open and closed 

sets. Then the entropy, h ( r  of r with respect to 79 is lim~-~o~ ~ log Mm 

where 

Mm = # { ( i l , i 2 , . . . , i m )  E I m  : Pi~ n r  n - "  n r  r  

Set Fi = 7r(Pi), .7: = (Fi} ie i  and 

Nm = # ( ( i l , i 2 , . . .  ,ira) e I TM : Fi~ n q o - l ( F i , ) n ' " n ~ o - m + l ( F i , ~ )  GO}. 

SinceTr(Pi, n r  �9 �9 �9 n r  C Fi, n~o-l(Fi~)n �9 ..A~o-m+IrF.~ i.~j, ~ 

we find that  M,~ < Arm. Hence 

(3.1) h(r  7 9) < lim 1 log N,~. 
m--r~ m 

We assert tha t  

(3.2) lim I log Nm <_ h(~o) + Q(qo, :F). 
m--}oo rt2 

To prove this, let d be a metric for the topology of X.  Since ~" consists of closed 

sets, we can find, for each x E X,  an open neighbourhood W ( x )  of x such tha t  

(3.3) F~nW(x)  r  x ~ Fi 

for all i E I .  Let k E 1~1 and set 

U(x) = w(x) n (fl-l(w(~o(x))) n ~-2(w(~(x))) n . . .  n ~O-k+l(w(~ok'l(x))). 

Let H be a finite subcover of {U(x)}xcx  and let e > 0 be a Lebesgue number  

for/4,  i.e. every e-ball B, (z )  = {y e X : d(y, z) < e}, z E X ,  is contained in a 

member  o f / / .  Let G: X - - + / / b e  a function such that  B~(x) C G(x),  x E X .  Let 

m E 51 and let E be an (ink, e)-sparming set of minimal cardinality; cf. [W], p. 

168. Then # E  = rkm(e, X )  in the notation of [W]. Let S be the set of mk-tuples  

( i l , i2 , . . .  ,imk) E I " k  for which there is an e E E such that  

(3.4) Fi~k+~ n ~ - '  (F~j~+,) n- - .  n ~o - k + l  (Fi(#+I) k ) n G(C k (e)) # $, 

j = 0, 1, 2 , . . .  , m -  1. Fix some e E E.  There are elements x0, x i , . . . ,  x ,n - i  E X 

such tha t  G ( ~ k ( e ) )  = V(x i ) ,  j = 0, 1 ,2 , . . .  , m -  1. So ff ( / 1 , i 2 , . . .  , imk) e I "nk 
satisfies (3.4) with respect to this e we have, because of (3.3), tha t  

xj ~ F~+,  n ~ - I (F~+ . )  n . . .  n ~o-k+l(F~c~+,).), 
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j = 1 ,2 , . . .  ,m  - 1. Therefore the number of tuples ( i l , i2 , . . .  ,i,~k) E Imk for 

which (3.4) holds for this specific e E E cannot exceed qk(~o, U), i.e. we have that  
# S  < (#E) .qk (% ~') m = rkm(e,X)'qk(~o, Yr) m. Now if (ix, i2, . . .  ,imk) �9 Imk is 

a tuple such that  Fix Nqo-I(Fi2)N "" "N~o-mk+l(Fik~) is not empty and x is an ele- 
ment in the intersection, then qo jk (x) �9 Fijk+l N~o-t (Fijk+2)N"" nqo -k+l(Fi(j+l)k). 

On the other hand, there is an element e �9 E such that d(qoi(x),qai(e)) < ~, i = 
O, 1, 2 , . . . ,  k m -  1, since E is (mk, e)-spanning. Hence qoJk(x) �9 B~(~k(e))  C 
G(~k(e)) and ~ k ( x )  �9 F i j , + ~ n ~ - l ( F i j ~ + , ) n  .. .n~p-k+~(Fq~+~),)nG(~(e)) r 

for all j = 0 , 1 , 2 , . . . , m -  1. This shows that  Nkm <_ # S  so that  N~m < 

r,~k ( e, X ) . qk ( ~o, u)m.  Consequently 

lim 1 log Arm-  lim ~ 1  log N k m _ < l i m s u p l l o g  r , ( e , X ) +  1 
rn~oo -m m-~oo km n n -k log qk (~P, .T). 

Since lim sup,  I log r,(e,  X) _< h(qo), cf. [W], we obtain (3.2) by letting k tend to 

infinity. By combining (3.1) and (3.2) we find that h(r 7 )) <_ h(~o)+ Q(~o, 7r(P)). 

The proposition follows by taking the supremum over all 7 ). | 

The preceding proof is an elaboration of an argument involved in one of the 

possible proofs of the variational principle for the topological entropy; cf. Lemma 

18.2 of [DGS]. 

LEMMA 3.7: Let r:  (Y,r -+ (X,~o) be a factor map between invertible 
dynamical systems with Y totally disconnected. For any k E N the defect of 
7r: (Y,r -~ (X, ~o) is the same as the defect ofr:  (y , r  _~ (X, ~k). 

Proof.- To distinguish between the two cases in the notation we let ~r(k) denote 

7r when the map is considered as a factor map (y,r  _+ (X,~ok). Then, by 

Theorem 2.1, 

D(~r) = sup f log #rc-l(x)d#(x)  
IzEM J X 

and 

where M 

D(Tr (k)) = sup f x l o g  #~r-a(x)d#(x) 
~EM~ 

probability measures. 

each u E Mk, 

and Mk denote the set of ~-invariant, resp. ~0k-invariant, Borel 

Since M C Mk we have that  D(Tr) < D(~r(k)). For 

k-1  

u' 1 Euo _ j 

j=O 
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is in M and 
l k - 1  

= [y log 

since # T r - l ( ~ ( x ) )  = #Tr- l (x)  for all j , x .  Hence P(~r (k)) _< D(~r). | 

We can now give the 

Proof of Theorem 3.5: Assume D(~r) < oo, and consider first the case where 

b 0 t h ~  and ~o are homeomorphisms. If h(r = oo it follows from Lemma 3.6 that  

h(~) = oo. So assume that  h(r < oo. Since h(~b k) = kh(r  and h(qo k) = kh(~) 
for all k C N, we get from Lemma 3.6 and Lemma 3.7 that 

k(h(r  - h(qo)) < D(~r) < oo 

for all k E N. This implies that  h(r = h(~o). This argument does not extend to 

the non-invertible case because Lemma 3.7 fails in the general case, but we can 

extend the conclusion in the following way. Let (E r he) denote t h e  n a t u r a l  

e x t e n s i o n  of r i.e. 

E r = {(Yo,Yl ,Y2, . . . )  E yN : r = yn,n >__ 0}, 

and he: E r --~ E r is given by ar = (r The natural extension (E ~, a~o) 

is defined similarly. We can then define a factor map ~: (Er162  --+ (E~,a~)  

by ~((yi)) = (~r(yi)). (The fact that ~ is surjective follows from the following 

little compactness argument: Let x = (x~) E E ~. For each k E N choose zk E 

Y such that  ~r(zk) = xk. Let a be any point in Y and define yk E yN by 

y~ -- Ck- i (zk) , i  <_ k,y~ = a,i > k. Let y be a condensation point for the 

sequence {Yk} in the compact metric space yN. Then y E E r and ~(y) = x.) 

It follows from [T], Remark 1.10, that  D(~) < D(lr). Hence D(~) < oo, since 

we assume that  D(r)  < oo; ar  and a~ are homeomorphisms and we conclude 

from the first part  of the proof that h(ar  = h(a~). By Proposition 5.2 of [B], 

h(r  --= h(ar  = h(a~) = h(~o). | 

The moral of Theorem 3.5 is that  the defect is finite, and hence interesting, only 

when the topological entropy can't  tell the involved dynamical systems apart. 

Very simple examples show that  the reverse implication, h(~b) = h(~o) =~ D(~r) < 

oo, is false in general. But in many interesting cases (e.g. when (Y, r  is an 

irreducible sofic system), the reversed implication is actually true. So in such 

cases the defect is interesting, as an invariant for factor maps, precisely when the 

entropy of the dynamical systems agree. 
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